Matrix
- class Matrix(l)
This represents a 4x4 matrix, that is used in various places in Ren'Py.
When used to transform coordinates, the 16 elements of this matrix are:
xdx, xdy, xdz, xdw, ydx, ydy, ydz, ydw, zdx, zdy, zdz, zdw, wdx, wdy, wdz, wdw
where x' = xdx * x + xdy * y + xdz * z + xdw * w, where x is the original value of x and x' is the transformed value, and similarly for x, y, z, and w. This is usually applied to a position where w is 1, allowing any combination of translation, rotation, and scaling to be expressed in a single matrix.
When used to transform colors, the 16 elements of this matrix are:
rdr, rdg, rdb, rda, gdr, gdg, gdg, gda, bdr, bdg, bdb, bda, adr, adg, adb, ada,
For the red, green, blue, and alpha channels.
Matrix objects can be multiplied using the Python multiplication operator, to generate a matrix that performs both operations. The order in which the matrixes appear can matter. Assuming v is a position or color being transformed:
(step2 * step1) * v
is equivalent to:
step2 * (step1 * v)
- l
This can be a list of 4, 9, or 16 numbers that is used to introduce this matrix. If not the full 16, the top-left corner of the matrix is initialized, with zdz and wdw set to 1.0 if not given. For example:
Matrix([ 1, 2, 3, 4 ])
would result in the Matrix:
1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
- Matrix.identity()
Returns an identity matrix.
- Matrix.offset(x, y, z)
Returns a matrix that offsets the vertex by a fixed amount.
- Matrix.perspective(w, h, n, p, f)
Returns a matrix suitable for the perspective projection of an image in the Ren'Py coordinate system. This is a view into the a coordinate system where, where when z=0, (0, 0) corresponds to the top-left corner of the screen, and (w, h) corresponds to the bottom-right corner of the screen.
- w, h
The width and height of the input plane, in pixels.
- n
The distance of the near plane from the camera.
- p
How far the z=0 plane is from the camera. This is also where one virtual pixel is one coordinate unit in x and y.
- f
The distance of the far plane from the camera.
- Matrix.rotate(x, y, z)
Returns a matrix that rotates the displayable around the origin.
- x, y, z
The amount to rotate around the origin, in degrees.
The rotations are applied in order:
A clockwise rotation by x degrees in the Y/Z plane.
A clockwise rotation by y degrees in the Z/X plane.
A clockwise rotation by z degrees in the X/Y plane.
- Matrix.scale(x, y, z)
Returns a matrix that scales the displayable.
- x, y, z
The factor to scale each axis by.